NVIDIA: How GPUs and Deep Learning Help Brewers Improve Their Suds
OREANDA-NEWS. September 03, 2015. Jason Cohen isn?t the first man to look for the solution to his problems at the bottom of a beer glass. But the 24-year-old entrepreneur might be the first to have found it.
Cohen?s tale would make a great episode of HBO?s “Silicon Valley” if only his epiphany had taken place in sun-dappled Palo Alto, Calif., rather than blustery State College, Pa. That Cohen has involved GPUs in this sudsy story should surprise no one.
This is the tale of a man who didn?t master marketing to sell his product — quality control software for beer makers. He had to master it to make his product. The answer, of course, turned out to be free beer. And that?s put Cohen right in the middle of the fizzy business of craft brewing, a business that moves so fast he?s enlisted GPUs to help his software keep up.
Cohen no stranger to fine food. His parents, both attorneys, were connoisseurs of fine olive oil. Cohen inherited their eclectic tastes. He became a professional tea taster before moving north, from Florida, to take an undergraduate political science scholarship at Penn State. There — while bouncing around from one discipline to another — he founded Penn State’s Tea Institute, now one of the world?s leading authorities on tea and tea culture.
Four years ago, Cohen was grappling with a problem that will be familiar to any data scientist. To get meaningful insights for the institute he needed more data. And to get it, he had to beg the college students around him to slurp tea and record their impressions. Not easy.
A Business Built on Free Beer
That?s when it hit Cohen: forget tea. He?d build his data set by offering free beer. Volunteers packed into his tastings, scribbling down their impressions of whatever suds Cohen served them. Bitter India pale ales. Crisp pilsners. Malty, chocolatey doppelbocks. They inhaled the two- to three-ounce portions.
Within weeks, Cohen had a trove of data that started yielding insights. He could use the data to identify flaws in beers. Beer that tastes like fresh-cut grass, for example, reveals too much of a compound called cis-3-hexenol. That?s caused when hops used in a beer are stale. It?s something any brewer will want to know right away.

Better still, Cohen could tease out insights that might escape the taster. A novice drinker, for example, may not know the difference between a good beer and one that has been “skunked” — giving the beer a manure-like flavor — because of exposure to too much light. But, by analyzing a drinker?s impressions of a beer, Cohen can. Better yet, he could predict what demographic groups would like a beer.
That?s when Cohen realized he didn?t have a research project. He had a business. Turns out 11 percent of all U.S. beer sales by volume last year came from small brewers. Better still, these fast-growing brewers are guzzling more than their share of sales, grabbing 19 percent of the beer industry?s \\$101.5 billion in retail sales.
An Ale of an Opportunity
It?s the culmination of a brewing renaissance that shows no signs of slowing. In 1983, there were just 51 U.S. brewers. The top six owned 92% of the market. Access to better technology is changing that. Small brewers — equipped with affordable new technologies like automated, high-quality canning systems — have been surging over the past two decades. There are now more than 3,000 of them. “That?s what saved beer, new technologies,” Cohen says.
To swallow even more of the market, these small brewers need to be consistent. Brewers — particularly small, craft brewers — live or die by quality and consistency. But no one is immune. During the 1970s, bad-tasting beer — due to experimentation with new brewing methods — all but destroyed Schlitz, once the top-selling beer in the United States. “That?s a story we tell to our clients,” Cohen says.
Key to consistency: speed. While Cohen?s trove of data lets him tease out 20 common flaws in a beer with just a handful of tastings — as drinkers record impressions on 25 factors on their smart phones — results weren?t coming in quickly. That can be trouble as brewers scramble to get beer to loading docks. Once that beer gets on the truck, Cohen explains, they don?t own it any more.

Chugging Data Faster
So Cohen?s 11-employee team began experimenting with GPUs, which allowed them to speed up the analysis of data gathered from tasters by threefold. And because Amazon hosts GPU-accelerated servers, the team can just rent access to the GPUs they need.
Thanks to GPUs, his company?s Gastrograph software can now identify dozens of obscure beer styles — Vienna lagers, Irish dry stouts or Berliner Weissbiers — in seconds, rather than minutes.
That?s crucial to detecting bad beer. Buttery diacetyl, for example, improves the thick, creamy body of dark porters and stouts. But it?s a fatal flaw in a crisp lager marketed to millions.
Cohen’s using GPUs for more than just classifying beers. He’s using them to create models that help analyze profiles generated by tasters against the more than 100,000 beer reviews his company has collected.
Without the parallel architecture of GPUs, for example, it took Cohen’s team a long time to train deep neural networks with many layers, or random forest models with many trees. Cohen’s team now uses NVIDIA’s CUDA toolkit in R — such as gputools and gmatrix — to boost performance. Now model tuning only takes minutes to complete.
Next up: growing his business. Cohen — now CEO of Analytical Flavor Systems — has one customer whose name he can drop, Otto?s Pub and Brewery. Dozens more are either working with him under non-disclosure agreements, or are in the pipeline. He?s raising his first venture capital round. And he planning to move into new offices. It?s an old frat house, appropriately enough.




Комментарии