OREANDA-NEWS. Fujitsu and the National Astronomical Observatory of Japan (NAOJ) announced that they have jointly developed and recently launched operations of the purpose-built Atacama Compact Array (ACA) Correlator supercomputer system, which will be employed as part of the Atacama Large Millimeter/submillimeter Array (ALMA) project, a Chile-based radio telescope featuring unprecedented sensitivity and resolution.
 
Comprised of 35 PRIMERGY x86 servers from Fujitsu and a specialized computational unit, the ACA Correlator meets the rigorous requirements demanded by the project, including computational performance capable of performing real-time processing of 512 billion samples of telescope radio signal data per second at a computational rate of 120 trillion operations per second, as well as the ability to ensure stable operations under harsh environmental conditions at an altitude of 5,000 meters and pressure of 0.5 atmospheres. The system will be responsible for processing massive sets of signal data from 16 antennas on its own.

Set at 5,000 meters above sea level in the Chilean Andes, ALMA is a massive radio telescope developed through a partnership among East Asia (led by NAOJ), North America and Europe. The telescope is capable of producing astronomical radio wave images with the world's highest resolution. The facility consists of 66 antennas arranged in a 18.5 km-diameter array, equivalent to the span of the Yamanote railway loop encircling the central part of Tokyo, and by processing millimeter/submillimeter wave signals from each antenna, it is possible for the antennas to act as a single, giant telescope that can generate radio wave images with the same resolution as those produced by a massive 18.5 km-diameter parabolic antenna. This makes it possible to see the dark regions of the universe that cannot be observed at optical wavelengths, such as galaxies that were formed shortly after the beginning of the universe, the birth of stars, planetary systems like our solar system, and matter related to the origin of life, such as of organic molecules.

NAOJ and the Fujitsu Group worked together to develop the ACA Correlator, a purpose-built supercomputer responsible for processing data from the Atacama Compact Array (ACA), which can make high sensitivity observations.

The system is comprised of 35 PRIMERGY x86 servers from Fujitsu and a specialized computational unit developed by Fujitsu Advanced Engineering Limited. With the ACA Correlator, it is possible to process extremely weak radio wave signals from far-away astronomical bodies by splitting up and processing roughly 500,000 frequency bands and outputting the data in a format that is optimal for observation. This enables resolution capability that makes it possible to observe, for instance, the traveling of a gas in space at a speed of 5 meters per second.